Gayatri Iyer | Pharmacogenomics | Best Researcher Award

Dr. Gayatri Iyer | Pharmacogenomics | Best Researcher Award

Scientist III at Tata Institute for Genetics and Society, India

Dr. Gayatri R. Iyer is a leading clinical geneticist and molecular biologist specializing in genetic counseling and rare disease diagnostics. With over a decade of hands-on experience in both research and clinical genetics, she bridges molecular science with patient-centric healthcare. She currently serves as Scientist Grade II at the Tata Institute for Genetics and Society, where she develops cost-effective diagnostic solutions for complex genetic disorders. Certified at Level II by the Board of Genetic Counseling, India, and holding an INSPIRE fellowship from the Department of Science and Technology, her professional journey reflects excellence in research, diagnostics, and community outreach. Her multidisciplinary expertise and contributions make her a standout nominee in the field of translational genetics.

profile

google scholar

Education

Dr. Iyer’s academic foundation is built on a rigorous and multidisciplinary path. She earned her Ph.D. in Human Genetics from Kamineni Hospitals, affiliated with Osmania University, where she was a DST-INSPIRE Fellow (2016–2021). Her doctoral research focused on developing methylation-specific PCR assays for imprinting disorders, reflecting her dedication to translating molecular diagnostics into clinical practice. She completed her M.Sc. in Applied Genetics from The Oxford College of Science, Bangalore, with a gold medal for academic excellence (2012–2014), and secured second rank in her B.Sc. in Biotechnology from Birla College, Mumbai (2012). She has supplemented her academic training with a PG Certificate in Medical & Genetic Counseling and a diploma in Bioinformatics.

Experience

With progressive experience in clinical genetics, Dr. Iyer has held diverse roles across premier institutions. At the Tata Institute for Genetics and Society (2023–present), she focuses on developing diagnostic platforms for rare disorders such as imprinting syndromes and neuromuscular conditions. During her postdoctoral fellowship at IIT Bombay (2022–2023), she worked on subcellular proteomics and gut microbiome sequencing. At Kamineni Hospitals, Hyderabad (2015–2021), she evolved from a Junior to Senior Research Fellow and served as a senior genetic counselor, managing over 2,000 cases across specialties including pediatrics, oncology, and reproductive medicine. Her work at LifeCell International and Datar Genetics further solidified her position as an expert counselor and educator.

Research Interest

Dr. Iyer’s research is centered on rare genetic diseases, molecular diagnostics, pharmacogenomics, and genetic counseling. She is especially focused on developing accessible and cost-effective diagnostic tools for Indian and resource-limited populations. Her doctoral work on imprinting disorders was groundbreaking, contributing novel diagnostic pathways for syndromes like Prader-Willi and Angelman. She is equally invested in epigenetics, next-generation sequencing, and microarray-based diagnostics. Her translational approach ensures that molecular insights are effectively integrated into patient care, family screening, and policy development. She continues to bridge the gap between lab-based discoveries and real-world clinical applications through genetic counseling and education.

Awards

Dr. Iyer’s contributions have been consistently recognized at national and international levels. She is the recipient of the DST Faculty Research Grant (2024–2029) and co-investigator on an ICMR CAR grant. Her global reputation was affirmed by receiving a $3,500 workshop grant and a travel grant from the International Prader-Willi Syndrome Organization. She was awarded the prestigious DST-INSPIRE Fellowship (2016–2021) and secured a travel grant to present her research at the Asia Pacific Prader-Willi Conference in Brisbane (2018). Her academic accolades include the Gold Medal in M.Sc. Applied Genetics and first rank in her Bioinformatics diploma. She also serves as Joint Secretary of the Executive Committee, Board of Genetic Counseling, India.

Publications

Dr. Iyer has contributed to over 15 peer-reviewed journal articles and book chapters. Selected impactful publications include:

Halder A, Iyer G, et al. (2023). Targeted proteomics distinguishes high and low grade meningioma tumors. Clin Proteomics, 20(1):41. [Cited by: 5]

Bajaj S, Iyer G, et al. (2022). Telegenetics diagnosis of Hunter syndrome during COVID-19. Int J Contemp Pediatr, 9:851–4. [Cited by: 2]

Iyer GR, et al. (2022). NGS in musculoskeletal disorders. J Orthop Surg Res, 17(1):76. [Cited by: 3]

Iyer GR, et al. (2021). Angelman syndrome phenotype with GABRG3. Ann Hum Genet, doi:10.1111/ahg.12449. [Cited by: 4]

Abbas NZ, Iyer GR, et al. (2020). Genotype-Phenotype correlation in pediatric neurology. Int J Health Clin Res, 3(5):67–73. [Cited by: 2]

Iyer G, et al. (2020). COVID-19 therapy driven by pharmacogenomics. AIJR Preprints. [Cited by: 7]

Iyer GR, et al. (2020). Host gene variants and COVID-19 progression. Front Genet, 11:861. [Cited by: 10]

Conclusion

Dr. Gayatri R. Iyer exemplifies the ethos of a best researcher through her unwavering commitment to bridging science and clinical application. Her pioneering work in low-cost diagnostic development for rare disorders, hands-on clinical counseling experience, interdisciplinary teaching, and highly cited publications affirm her exceptional contribution to medical genetics and public health. Her nomination for the Best Researcher Award is a recognition of her dedication, innovation, and leadership in translating genetic research into impactful health solutions.

Eyachew Misganew Tegaw | AI in Personalized Medicine | Best Researcher Award

Assist. Prof. Dr. Eyachew Misganew Tegaw | AI in Personalized Medicine | Best Researcher Award

Assistant Professor of Medical Physics at  Debre Tabor University, Ethiopia.

Dr. Eyachew Misganew Tegaw is an Assistant Professor of Medical Physics at Debre Tabor University, Ethiopia. He earned his Ph.D. from Tehran University of Medical Sciences, specializing in intraoperative radiotherapy using nanoparticles for breast cancer treatment. His research spans medical imaging, radiation therapy, nanomedicine, and AI applications in oncology. Dr. Eyachew Misganew Tegaw has published extensively in peer-reviewed journals and actively contributes to scientific advancement through research, mentorship, and international collaboration.

👨‍🎓 Educational Background:

Eyachew Misganew Tegaw holds a Ph.D. in Medical Physics from the Tehran University of Medical Sciences (TUMS), Iran, where he specialized in intraoperative radiotherapy (IORT) using nanoparticles for breast cancer treatment. His academic journey began with a B.Sc. in Applied Physics from the University of Gondar, followed by an M.Sc. in Condensed Matter Physics from Mekelle University. Across these programs, he built a strong foundation in quantum mechanics, computational physics, and radiation therapy physics, gaining multidisciplinary expertise in both theoretical and applied domains.

Profile:

👨‍🏫 Professional Experience:

With over a decade of academic service, Dr. Eyachew Misganew Tegaw currently serves as an Assistant Professor in the Department of Physics at Debre Tabor University, Ethiopia. He previously held the position of Lecturer at the same institution, actively contributing to curriculum development and student mentorship. His leadership experience includes a two-year term as Department Head and three years as Chair of the Ethiopian Space Science Society (Debre Tabor Branch), showcasing his commitment to both academic and community development.

🧪 Research Interests:

Dr. Eyachew Misganew Tegaw is a highly driven researcher with diverse interests spanning medical physics, radiotherapy technologies, medical imaging, radiation dosimetry, nanomedicine, Monte Carlo simulations, and artificial intelligence. His work integrates cutting-edge approaches like deep learning and machine learning with traditional medical physics techniques, aiming to enhance cancer treatment planning and medical imaging. He is especially passionate about nanoparticle-enhanced therapies and computational modeling for improved patient outcomes in oncology.

🔍 Areas for Improvement:

While Dr. Eyachew Misganew Tegaw has made significant strides in academic research, increased visibility through invited talks, expanded international partnerships, and higher engagement in translational clinical projects could further enhance his research impact. Diversifying funding sources and mentoring emerging researchers may also solidify his standing in the global scientific community.

📚 Scientific Contributions

Dr. Eyachew has authored and co-authored numerous peer-reviewed journal articles in high-impact scientific journals. His publications cover a wide range of topics such as Monte Carlo simulations for radiotherapy, nanoparticle-enhanced imaging and treatment, and explainable AI in oncology. Notable among his recent works is a 2025 article in Scientific Reports comparing survival outcomes in breast cancer surgery, and another accepted paper focusing on AI for lung cancer survival prediction. His systematic reviews and meta-analyses have also significantly contributed to evidence-based practice in cancer diagnosis and therapy.

Publications:

  1. Diagnostic performance of mammography and ultrasound in breast cancer: A systematic review and meta-analysis
    Journal of Ultrasound, 2023

  2. Dosimetric characteristics of the INTRABEAM® system with spherical applicators in the presence of air gaps and tissue heterogeneities
    Radiation and Environmental Biophysics, 2020

  3. Techniques for generating attenuation map using cardiac SPECT emission data only: A systematic review
    Annals of Nuclear Medicine, 2019

  4. Molecular imaging approaches in the diagnosis of breast cancer: A systematic review and meta-analysis
    Iranian Journal of Nuclear Medicine, 2020

  5. Comparison of organs at risk doses between deep inspiration breath-hold and free-breathing techniques during radiotherapy of left-sided breast cancer: A meta-analysis
    Polish Journal of Medical Physics and Engineering, 2022

  6. Gold-nanoparticle-enriched breast tissue in breast cancer treatment using the INTRABEAM® system: A Monte Carlo study
    Radiation and Environmental Biophysics, 2022

  7. Dosimetric effect of nanoparticles in the breast cancer treatment using INTRABEAM® system with spherical applicators in the presence of tissue heterogeneities: A Monte Carlo study
    Biomedical Physics & Engineering Express, 2021

  8. A comparison between EGSnrc/Epp and MCNP in simulation of dosimetric parameters for radiotherapy applications
    Journal of Biomedical Physics & Engineering, 2021

  9. Explainable machine learning to compare the overall survival status between patients receiving mastectomy and breast conserving surgeries
    Scientific Reports, 2025

  10. Attenuation correction for dedicated cardiac SPECT imaging without using transmission data
    Molecular Imaging and Radionuclide Therapy, 2023

  11. Comparative study between EPID and CBCT for radiation treatment verifications
    Iranian Journal of Medical Physics, 2018

Nazanin Zounemat-Kermani | Computational Systems Medicine | Best Researcher Award

Dr Nazanin Zounemat-Kermani | Computational Systems Medicine | Best Researcher Award

Dr. Nazanin Zounemat-Kermani is an accomplished biomedical data scientist whose research stands at the forefront of precision medicine, respiratory disease, and artificial intelligence. Currently serving as a Postdoctoral Research Associate at both the National Heart and Lung Institute (NHLI) and the Data Science Institute (DSI) at Imperial College London, she has earned international recognition for her leadership in multi-omics data integration and machine learning applications in health sciences.

Profile:

🎓 Educational Background:

Dr. Kermani’s academic journey reflects a rare interdisciplinary blend of computer science and biomedical research. She holds a PhD in Biomedicine from Imperial College London (2020), following dual master’s degrees in Artificial Intelligence from the University of Amsterdam (2011) and Machine Learning and Robotics from the University of Tehran (2004). Her academic roots trace back to a Bachelor of Engineering in Software Engineering from Ferdowsi University of Mashhad (2002).

💼 Professional Experience:

Since 2020, Dr. Kermani has worked as a Postdoctoral Research Associate at Imperial College London, after several years as a Research Assistant and PhD candidate in Zoltan Takats’ Lab. Her academic trajectory within one of the world’s top institutions reflects both her scientific rigor and leadership capabilities.

🎓🤝 Academic Mentorship:

Dr. Nazanin Zounemat-Kermani is widely respected not only for her scientific contributions but also for her unwavering commitment to mentorship and academic leadership. Throughout her career, she has actively nurtured the growth of early-career scientists, postdoctoral researchers, and graduate students. As a senior member of interdisciplinary consortia such as AI-RESPIRE, PRISM, and U-BIOPRED, she has led cross-functional teams spanning clinical science, data engineering, and machine learning—mentoring junior colleagues in both technical development and scientific publishing. Her leadership style is inclusive and empowering, emphasizing hands-on guidance in areas such as statistical modeling, research communication, and responsible data science.

🏆 Awards and Honors:

Dr. Kermani has received numerous accolades, including the MSACL Young Investigator Award (2016), Scholar Awards from the American Thoracic Society (2022, 2023), and multiple research grants from prestigious bodies such as the UKRI, MRC, and EPSRC. She has also been invited to present her research by eminent scholars at institutions like Oxford University and Amsterdam UMC.

🌍 Global Projects and Leadership

Dr. Kermani has led and contributed to numerous high-impact international projects, including:

  • RASP-UK: She developed a robust data management platform supporting clinical and omics data integration for asthma research.

  • PIONEER: Co-led machine learning initiatives in prostate cancer, resulting in a key senior-author publication.

  • U-BIOPRED: Coordinated Europe’s largest severe asthma cohort study, publishing over 20 peer-reviewed articles and acting as corresponding author on influential multi-omics studies.

  • UK-Korea PRISM: Leads cross-national efforts in asthma pathophysiology using advanced analytics and single-cell data.

  • AI-RESPIRE: Heads AI model development for environmental and physiological time-series data, mentoring early-career researchers.

  • DeVENT and PROmics: Oversees analysis in critical care and deep learning integration in patient-reported outcomes.

📚 Publications:

  1. CC16 Confers Protection Against Influenza A Virus Infection in Human Airway Epithelium
    H. Kimura, N.Z. Kermani, N. Kimura, M.M. Siddiq, D. Francisco, I.M. Adcock, et al.
    American Journal of Respiratory and Critical Care Medicine, Vol. 211 (Abstracts), 2025.

  2. Distinct Single-Cell Transcriptional Profile in CD4⁺ T-Lymphocytes Among Obese Children With Asthma
    V. Tejwani, R. Wang, A. Villabona-Rueda, K. Suresh, T.D. Wu, I.M. Adcock, et al.
    American Journal of Physiology – Lung Cellular and Molecular Physiology, Vol. 328(3), 2025.

  3. Female Sex Hormones and the Oral Contraceptive Pill Modulate Asthma Severity Through GLUT-1
    A.C. Brown, O.R. Carroll, J.R. Mayall, N. Zounemat-Kermani, S.L.E. Vinzenz, et al.
    Mucosal Immunology, 2025.

  4. Neutrophilic Inflammation in Sputum or Blood Does Not Define a Clinically Distinct Asthma Phenotype in ATLANTIS
    P.J.M. Kuks, T.M. Kole, M. Kraft, S. Siddiqui, L.M. Fabbri, K.F. Rabe, A. Papi, et al.
    ERJ Open Research, Vol. 11(1), 2025.

  5. The Role of WNT5a and TGF‐β1 in Airway Remodelling and Severe Asthma
    T. Daud, S. Roberts, N. Zounemat-Kermani, M. Richardson, L.G. Heaney, et al.
    Allergy, 2025.

  6. Clinical Importance of Patient-Reported Outcome Measures in Severe Asthma: Results from U-BIOPRED
    R. Meys, F.M.E. Franssen, A.J. Van ‘t Hul, P.S. Bakke, M. Caruso, B. Dahlén, et al.
    Health and Quality of Life Outcomes, Vol. 22(1), Article 109, 2024.

  7. Radiomultiomics: Quantitative CT Clusters of Severe Asthma Associated With Multiomics
    N.Z. Kermani, K.F. Chung, G. Macis, G. Santini, F.A.A. Clemeno, A. Versi, K. Sun, et al.
    European Respiratory Journal, Vol. 64(5), 2024.

  8. S12 Association Between Disease Duration and FEV1 in Severe Asthma Phenotypes and Endotypes
    F. Yang, N. Zounemat-Kermani, P. Dixey, I.M. Adcock, C.I. Bloom, K.F. Chung
    Thorax, Vol. 79(Suppl 2), A15–A16, 2024.

  9. S120 Post-Hoc Analysis of Transcriptomic and Clinical Predictors of Remission in the ATLANTIS Cohort
    A.A. Kumar, T.M. Kole, M.C. Nawijn, K.F. Rabe, A. Papi, C. Brightling, D. Singh, et al.
    Thorax, Vol. 79(Suppl 2), A83–A84, 2024.

  10. Discovery and Validation of a Volatile Signature of Eosinophilic Airway Inflammation in Asthma
    R. Peltrini, R.L. Cordell, M. Wilde, S. Abuhelal, E. Quek, N. Zounemat-Kermani, et al.
    American Journal of Respiratory and Critical Care Medicine, Vol. 210(9), pp. 1101–1112, 2024.

  11. Cardiovascular Events in CML Patients Treated With Nilotinib: Validation of the HFA-ICOS Baseline Risk Score
    M. Andres, F. Fernando, S. Claudiani, N. Kermani, G. Ceccarelli, J. Apperley, et al.
    European Heart Journal, Vol. 45(Suppl 1), ehae666.3169, 2024.

  12. Scientific Business Abstracts
    F. Cooles, G. Vidal-Pedrola, N. Naamane, A. Pratt, B. Barron-Millar, et al.
    QJM: An International Journal of Medicine, Article hcae157, 2024.

  13. A Severe Asthma Phenotype of Excessive Airway Haemophilus influenzae Relative Abundance Associated With Sputum Neutrophilia
    A. Versi, A. Azim, F.X. Ivan, M.I. Abdel-Aziz, S. Bates, J. Riley, M. Uddin, et al.
    Clinical and Translational Medicine, Vol. 14(9), e70007, 2024.

  14. Host-Microbial Interactions Differ With Age of Asthma Onset
    A. Versi, A. Azim, F.X. Ivan, M.I. Abdel-Aziz, S. Bates, J. Riley, et al.
    European Respiratory Journal, 2024.

  15. Cardiovascular Events in CML Patients Treated With Nilotinib: Validation of the HFA-ICOS Baseline Risk Score
    F. Fernando, M.S. Andres, S. Claudiani, N.Z. Kermani, G. Ceccarelli, A.J. Innes, et al.
    Cardio-Oncology, Vol. 10(1), Article 42, 2024.

  16. Endotypes of Severe Neutrophilic and Eosinophilic Asthma From Multi-Omics Integration of U-BIOPRED Sputum Samples
    N.Z. Kermani, C.X. Li, A. Versi, Y. Badi, K. Sun, M.I. Abdel-Aziz, M. Bonatti, et al.
    Clinical and Translational Medicine, Vol. 14(7), e1771, 2024.

  17. IL-33 Induced Gene Expression in Activated Th2 Effector Cells Is Dependent on IL-1RL1 Haplotype and Asthma Status
    A.K.S. Jayalatha, M.E. Ketelaar, L. Hesse, Y.E. Badi, N. Zounemat-Kermani, et al.
    European Respiratory Journal, Vol. 63(6), 2024.

  18. Comparison of Asthma Phenotypes in Severe Asthma Cohorts (SARP, U-BIOPRED, ProAR and COREA) From Four Continents
    S.Y. Park, S. Fowler, D.E. Shaw, I.M. Adcock, A.R. Sousa, R. Djukanovic, et al.
    Allergy, Asthma & Immunology Research, Vol. 16(4), p. 338, 2024.

  19. Enose-Derived Response Clusters in Severe Asthmatics Treated With Anti-IL5/5R Biologics
    P. Dixey, N. Zounemat-Kermani, K. Raby, P.K. Bhavsar, K.F. Chung
    B16. Novel Insights Into Asthma Pathogenesis, A3013, 2024.

  20. Association of CC16 Expression in the Airways With Signature Expression of Multi-Omics Data
    H. Kimura, N.Z. Kermani, I.M. Adcock, K.F. Chung, M. Kraft
    D91. Bridging the Gap: Translational Studies in ARDS, Pneumonia, and Sepsis, 2024.